phenomenological observation rather than a structural

Inorganic Chemistry

and AB_2Te_4 . The observation that NiCr₂S₄ and NiCr₂Se₄ are semiconductors, not metals,¹³ is another indication that metal-metal bonding is not a prerequisite for the formation of an NiAs-type phase. In addition, the *relatively* small c/a and c/b values found in certain AB₂Se₄ compounds suggest that the occurrence of metallic conductivity may best be treated as a

(13) R. J. Bouchard and A. Wold, J. Phys. Chem. Solids, 27, 591 (1966).

determinant. Acknowledgments.—The assistance of J. L. Gillson, who measured the resistivity, and J. F. Weiher, who measured the magnetic susceptibility, is gratefully acknowledged. Thanks are given to C. T. Prewitt, who provided the computer program and considerable assistance in its use. A. W. Sleight is thanked for his help in this respect. Discussions with D. B. Rogers

Contribution from the Lawrence Radiation Laboratory and Department of Chemistry, University of California, Berkeley, California 94720, and Department of Chemistry, Princeton University, Princeton, New Jersey 08540

are also appreciated.

The Crystal Structure of a Hexanuclear Basic Lead(II) Perchlorate Hydrate: $Pb_6O(OH)_6(ClO_4)_4 \cdot H_2O^{1a}$

BY THOMAS G. SPIRO¹⁶, DAVID H. TEMPLETON,¹⁰ and ALLAN ZALKIN¹⁰

Received April 26, 1968

The structure of $Pb_6O(OH)_6(ClO_4)_4 \cdot H_2O$ has been determined by single-crystal X-ray diffraction. The crystals are orthorhombic, space group Pbca, Z = 8, $a = 10.814 \pm 0.005$ Å, $b = 16.706 \pm 0.006$ Å, $c = 26.273 \pm 0.008$ Å, $d_x = 4.973$ g/cm³, $d_m = 5.07 \pm 0.03$ g/cm³. The structure was refined to a conventional R factor of 5.5%, using 791 intensities which were collected by counter methods. The crystal contains discrete $Pb_6O(OH)_6^{4+}$ units. Four of the lead atoms are found in a central tetrahedron (distorted) while the remaining two cover two of the tetrahedral faces, thereby forming two exterior tetrahedra. The adjacent Pb-Pb distances average 3.81 Å and range from 3.44 to 4.09 Å. A unique oxygen atom (oxide) is found at the center of the central lead tetrahedron. The remaining six oxygen atoms, presumably hydroxide, are located over the six external faces of the two exterior lead tetrahedra. These results contradict an earlier conclusion from Raman evidence that the lead atoms are at the corners of an octahedron.

Introduction

Recently Maroni and Spiro² investigated the vibrational spectra of a series of hydroxy- and alkoxybridged polyhedra of Bi(III), Pb(II), and Tl(I). The most significant result was the finding of a set of lowfrequency Raman bands attributable almost entirely to the motions of the metal atoms. The high intensity of these bands was taken as evidence for some degree of metal-metal bonding and the simplicity of their pattern suggested that they might be useful in structural characterization of polynuclear species.

Of particular interest in the latter connection were the species present in perchlorate solutions of lead(II) containing 1.33 mol of hydroxide per mole of lead. Potentiometric³ and ultracentrifuge⁴ data were consistent with an equilibrium between $Pb_3(OH)_4^{2+}$ and $Pb_6(OH)_{8}^{4+}$. Crystals of composition $Pb_3(OH)_4(ClO_4)_2$ were described in 1930 by Willard and Kassner.⁵ The Raman spectrum^{2b} of these crystals showed three strong low-frequency bands similar to those exhibited^{2a} by octahedral $Bi_6(OH)_{12}^{6+}$. Since in the concentrated solutions from which the crystals were obtained $Pb_6(OH)_{8}^{4+}$ was presumably predominant, it was inferred that these crystals also contained this complex, and its structure was predicted to be octahedral.^{2b} The eight hydroxide ions were presumed to lie above the eight trigonal faces of the lead octahedron, giving a structure analogous to that of $Mo_6Cl_8^{4+.6}$ A normalcoordinate analysis^{2b} showed that this structure was capable of predicting all of the observed Raman and infrared bands of the crystals.

We report here a determination of the structure of these crystals by X-ray diffraction. The results are consistent with the chemical analysis by Willard and Kassner⁵ but indicate that the crystals should be formulated as $Pb_6O(OH)_6(ClO_4)_4 \cdot H_2O$ and that the

 ⁽a) Work done under auspices of the Atomic Energy Commission.
 Supported in part by Public Health Service Research Grant GM13498 to
 T. G. S. (b) Princeton University. (c) University of California.

 ⁽²⁾ V. A. Maroni and T. G. Spiro, *Inorg. Chem.*: (a) 7, 183 (1968); (b) 7, 188 (1968); (c) 7, 193 (1968).
 (2) A. O', 193 (1968).

⁽³⁾ A. Olin, Acta Chem. Scand., 14, 126, 814, 1999 (1960); Svensk Kem. Tidskr., 73, 482 (1961).

⁽⁴⁾ O. E. Esval and J. S. Johnson, J. Phys. Chem., 69, 959 (1965).

⁽⁵⁾ H. H. Willard and J. L. Kassner, J. Am. Chem. Soc., 52, 2395 (1930).

⁽⁶⁾ C. Brosset, Arkiv Kemi, 1, 353 (1949); Arkiv Kemi, Mineral. Gecl., A20, No. 7 (1945).

Raman prediction of structure is incorrect. Discrete hexanuclear complexes are indeed found, but the lead atoms are arranged at the corners of three face-sharing tetrahedra rather than at the corners of an octahedron. As indicated in the formula, this complex contains six rather than eight hydroxide ions and also one oxide ion, the latter being located at the center of the central tetrahedron of lead atoms.

Experimental Section

Crystals of composition $Pb_3(OH)_4(ClO_4)_2$ were prepared by the method of Willard and Kassner.⁵ Various crystals were examined in preliminary experiments by the Weissenberg (with Cu K α radiation) and counter techniques (Mo K α radiation, $\lambda 0.71069$ Å). Two sets of intensity data were used in the analysis. The first was obtained with a crystal of irregular shape. For the final measurements, a crystal was ground and etched with water to a sphere of diameter 0.13 mm and glued to a glass fiber. The c axis was aligned coincident with the ϕ axis of our instrument. The cell dimensions and diffraction intensities were measured at a temperature of ca. 23° using a manually operated General Electric XRD-5 goniostat equipped with a scintillation counter and pulse-height discriminator. The Mo X-ray tube was operated at 45 kV and 20 mA. Each reflection was measured for 10 sec with the stationary-crystal, stationary-counter technique. The background was measured near each reflection. The maximum intensity was 8785 counts in 10 sec for the 002 reflection. The minimum background was 55 counts in 10 sec at $2\theta = 35^{\circ}$. Some difficulty was encountered with overlapping reflections, and we made some adjustments as best as we could to correct for this effect. Defects in this adjustment may be one of the limiting sources of error in the data. Measurements were made for 1111 independent reflections, including all but a few within the limit $2\theta < 35^{\circ}$. Of these, 320 were recorded as less than 30 counts above background and were discarded. The remaining 791 reflections were used in the final analysis.

The linear absorption coefficient of the material is estimated as 419 cm⁻¹ (Mo K α), and $\mu R = 2.83$. The intensities were corrected for absorption on the basis of the tabulation for spherical crystals in the "International Tables."⁷ The variance of each intensity was estimated to be

$$\sigma^{2}(I) = I + 2B + (pI)^{2} + q$$

where I is the net counts, B is the background, p is the fraction of I which is included to represent nonstatistical errors (0.10 in this case), and q is a constant (30 in this case) which represents additional error in the background. Structure factors were derived from the intensities with the usual corrections for Lorentz and polarization effects. Standard deviations of structure factors were taken as

$$\sigma(F_{o}) = F_{o} - (kI - k\sigma(I))^{1/2}, \, kI = F_{o}^{2}$$

No intensity was used which was less than its standard deviation, and therefore the term under the square root is always positive. In the final least-squares refinement, observations were weighted as $w = [\sigma(F)]^{-2}$.

Calculations were made with a CDC-6600 computer. The data were adjusted to an absolute scale and expressed as normalized structure magnitudes |E| using an unpublished program written by H. S. Maddox and M. L. Maddox. We used our own unpublished programs for data processing, Fourier series, full-matrix least squares, and interatomic distances. The function minimized in the method of least squares is $\Sigma w (\Delta F)^2 / \Sigma w |F_o|^2$,

where ΔF is the difference between the magnitudes of the observed and calculated structure factors F_{\circ} and F_{\circ} .

Atomic scattering factors and anomalous dispersion corrections for Pb^{2+} and neutral Cl and O were taken from the compilations of Cromer and Waber.⁶ The real and imaginary dispersion corrections are respectively -3.79 and 10.18 for Pb and 0.15 and 0.19 for Cl.

The isotropic temperature factor is defined as $\exp(-B\lambda^{-2} \sin^2 \theta)$, where B is the thermal parameter. The anisotropic temperature factor is $\exp(-\frac{1}{4\Sigma\Sigma}B_{ij}b_ib_ih_ih_j)$, for all values of *i* and *j* from 1 to 3; b_i is the *i*th reciprocal axis length, h_i is a Miller index, and B_{ij} is a thermal parameter.

In this paper we designate the conventional R factor as $R = \Sigma |\Delta F| / \Sigma |F_o|$ and the weighted R factor as $R_2 = (\Sigma w (\Delta F)^2 / \Sigma w (F_o)^2)^{1/2}$.

Results

Unit Cell and Space Group.—The crystals are orthorhombic, and the systematic absences (0kl, k = 2n + 1; h0l, l = 2n + 1; and hk0, h = 2n + 1)indicate space group Pbca, with eightfold general positions: $\pm (x, y, z; 1/2 + x, 1/2 - y, -z; -x, 1/2 + y, 1/2 - z; 1/2 - x, -y, 1/2 + z)$. The cell dimensions are $a = 10.814 \pm 0.005, b = 16.706 \pm 0.006$, and $c = 26.273 \pm 0.008$ Å (23°). For eight formula units of Pb₆O(OH)₆(ClO₄)₄. H₂O per cell the calculated density is 4.973 g/cm³. The density measured with pycnometer and carbon tetrachloride at 24° is 5.07 \pm 0.03 g/cm³. Part of the discrepancy may be the result of contamination of the pycnometer sample, for example with lead carbonate (d = 6.6 g/cm³).

Phase Determination.—The structure was solved with 286 reflections from the first data set by use of the symbolic addition procedure⁹ to determine the phases. We used only the Σ_2 relation, $sE_h = s\Sigma_k E_k E_{h-k}$, where s means "sign of." Long's program¹⁰ was used to apply this relation to the 286 reflections of highest |E|. Three reflections were given plus phases in order to fix the origin and four others were assigned symbols a, b, c, or d. These are listed in Table I. Of the 16 combinations of initial signs for these symbols, three converged in 9 or 11 cycles to indications that a = +, b = +, c = -, and d = -. One of these gave a consistency index¹⁰ of 0.49, while the next highest index was 0.39. No other starting set required less than 8 cycles to converge.

	TABLE I			
TARTING	Reflections for	Σ_2	PROCEDUR	E

Sign	hkl	Sign	hkl
+	28 9	a	473
+	1,5,14	b	154
+	5,10,8	с	127
		d	1,9,11

An E map (Fourier synthesis) was computed using the signs from the most consistent set. It showed six

(8) D. T. Cromer and J. T. Waber, Acta Cryst., 18, 104 (1965); D. T. Cromer, *ibid.*, 18, 17 (1965).

(9) I. L. Karle and J. Karle, ibid., 16, 969 (1963).

(10) R. E. Long, Thesis, University of California at Los Angeles, 1965.

⁽⁷⁾ W. L. Bond in "International Tables for X-Ray Crystallography," Vol. II, J. S. Kasper and K. Lonsdale, Ed., The Kynoch Press, Birmingham, England, 1959, p 302.

TABLE II

Positional Coordinates and Thermal Parameters for Lead Atoms in $Pb_6O(OH)_6(ClO_4)_4 \cdot H_2O^a$

Atom	x	y	z	$B_{11}{}^{b}$	B 2 2	B_{33}	B_{12}	B13	B 23
Pb(1)	0.3391 (4)	-0.0421 (3)	0.2050(2)	5.2(3)	3.2(2)	4.4(2)	0.3(2)	0.2(2)	0.8(2)
Pb(2)	0.2347(4)	0.1505(3)	0.1530(2)	2.9(2)	3.4(2)	5.0(2)	0.0(2)	0.1(2)	0.3(2)
Pb(3)	0.5672(4)	0.1527 (3)	0.1990(2)	3.9(2)	5.4(3)	3.2(2)	0.7(2)	-0.2(2)	-0.9(2)
Pb(4)	0.5078(4)	0.0543(3)	0.0866(2)	3.3(2)	4.1 (2)	4.0(2)	0.4(2)	0.0(2)	-1.2(2)
Pb(5)	0.4734(4)	0.2794(3)	0.0863(2)	3.4(2)	3.8(2)	4.3 (2)	-0.1(2)	-0.2(2)	1.1 (2)
Pb(6)	0.7958(4)	0.2123 (3)	0.0935(2)	3.6(2)	5.8(3)	4.2(2)	-0.7(2)	0.4(2)	-0.5(2)

^a Standard deviations are given in parentheses and refer to the least significant digit. ^b Thermal parameter units are Å².

pronounced peaks, which could readily be identified with the six lead atoms in the hexanuclear unit. The positions of the six lead atoms were refined with isotropic temperature factors by least squares using the original data set. Four cycles reduced R to 0.17. A Fourier synthesis of ΔF then revealed four prominent peaks, assignable to the chlorine atoms in the four perchlorate groups, and many lesser peaks, some of which were assigned to oxygen in the perchlorate ions or bound to the lead atoms. Subsequent leastsquares refinement, with anisotropic temperature factors for the lead atoms, eventually reduced R to 0.10. However, several oxygen atoms refused to refine properly, giving unreasonable interatomic distances or excessive thermal parameters.

At this point it was judged that the intensities had been taken without proper attention to background, overlap, and absorption corrections, and it seemed evident that this inadequacy would prevent further clarification of the oxygen positions. Accordingly the final set of intensities were measured. The new data were used to refine the previously determined lead and chlorine positions, with anisotropic thermal parameters for lead. Two cycles of least squares led to R = 0.11. A difference Fourier synthesis was calculated, and 23 of the highest peaks could be assigned to oxygen bound to chlorine or lead. All of these oxygen atoms now refined properly, and R was reduced to 0.062 and R_2 to 0.073.

According to the chemical analysis⁵ a water molecule remained to be included in the structure, and the experimental density corresponded to three additional molecules. A search for cavities in the structure revealed only one hole large enough for a water molecule. In a Fourier synthesis of ΔF , the largest peak (of height 2.6 e⁻/Å³) coincided with that hole. Introduction of an oxygen atom (designated O(8)) at this location decreased R to 0.060 and R_2 to 0.070. This atom had been recognized in earlier Fourier maps, but had been rejected because a computational blunder caused it to have an unreasonably large thermal parameter.

Up to this time the 791 reflections had been assigned equal weight. After a few errors in the data were corrected, refinement was continued with various weighting schemes until one was found which corresponded reasonably well to the distribution of magnitudes of discrepancies as a function of observed intensity. After the final refinement, R was 0.055, R_2 was 0.069, and the estimated standard deviation of an observation of unit weight was 1.09. In the last cycle, no coordinate or thermal parameter shifted more than 9% of its estimated standard deviation. A final synthesis of ΔF showed a maximum value of 1.6 e^{-/ų} and 28 other peaks higher than 1.0 e^{-/ų}. Under these circumstances, a search for hydrogen atoms seemed unjustified.

The final values of the parameters are given in Table II for lead atom and in Table III for chlorine and oxygen atoms. Table IV contains the observed and calculated structure factors. Interatomic distances are listed in Tables V–VII. Some angles in the $Pb_6O(OH)_6^{4+}$ cluster are listed in Table VIII.

TABLE III

Final	Coor	RDINATES	and]	[] THER:	MAL P.	ARAME	TERS FO	R
Chlorine	AND	Oxygen	Atom	1S IN	Pb ₆ O($(OH)_{6}$	$(ClO_4)_4$	H ₂ O ^a

Atom	x	y y	2	B, Ų
O(1)	0.440 (6)	0.166(4)	0.133(2)	6(2)
O(2)	0.301(5)	0.025(3)	0.129(2)	3(1)
O(3)	0.309(6)	0.096(4)	0.222(2)	6 (2)
O(4)	0.630(4)	0.267(3)	0.141(2)	2(1)
O(5)	0.605(5)	0.192(3)	0.054(2)	4 (1)
O(6)	0.689(5)	0.111(3)	0.136(2)	4(1)
O(7)	0.519(5)	0.012(3)	0.176(2)	4 (1)
O(8)	0.388(7)	0.116(5)	0.482(3)	9 (2)
Cl(1)	0.890(2)	0.296(2)	0.233(1)	5.0(7)
Cl(2)	0.978(3)	-0.002(2)	0.162(1)	4.9(6)
Cl(3)	0.241(3)	0.099(2)	-0.002(1)	5.5(6)
Cl(4)	0.107(2)	0.335(2)	0.084(1)	4.5(6)
$O(11)^{b}$	0.820(6)	0.359(4)	0.208(2)	7(2)
O(12)	0.884(5)	0.222(3)	0.207(2)	5(2)
O(13)	0.833(7)	0.275(4)	0.276 (3)	8(2)
O(14)	0.028(7)	0.315(4)	0.235(3)	7(2)
O(21)	0.853(7)	-0.033 (4)	0.174(3)	7(2)
O(22)	0.056(8)	-0.065(5)	0.136(3)	10(3)
O(23)	-0.022 (6)	0.067(4)	0.134(3)	7(2)
O(24)	0.044(6)	0.016(4)	0.207(2) .	6(2)
O(31)	0.315(6)	0.028(4)	-0.013 (2)	6 (2)
O(32)	0.135(7)	0.074(4)	0.026 (3)	8(2)
O(33)	0.197(6)	0.138(4)	-0.044 (3)	7(2)
O(34)	0.317(8)	0.152(5)	0.024(3)	9 (2)
O(41)	0.141(7)	0.398(5)	0.045(3)	9 (2)
O(42)	0.090 (6)	0.258(4)	0.064(2)	5(1)
O(43)	0.000 (5)	0.365(3)	0.109(2)	3(1)
O(44)	0.194(7)	0.335(4)	0.120(3)	7(2)

^a Standard deviations, estimated by least squares, are given in parentheses and refer to the least significant digits. ^b O(ij) refers to the *j*th oxygen bound to the *i*th chlorine in the perchlorate groups.

TABLE IV

Observed and Calculated Structure Factors for $Pb_6O(OH)_6(ClO_4)_4 \cdot H_2O$ [FCA(0, 0, 0) = 2645]

L FOR FCA	3 149-140	9 222 234	3 126 133	16 73 64	17 76 87	10 102 102	1 63 - 52	4 139 139	H.K. 4. 5	2 145-157	9 88 78	12 222 202	4 286 265
H.K. 0. 0	5 167 166	11 203 212	4 117 109	18 280-261	19 217 225	H.K. 2. 12	2 362-365	H.K. 1. 11	0 719 217	4 168 116	10 143-148	H.K. A. 7	6 250-229
2 236-203	A 302 309	12 168-173	6 78 -56	20 118-142	H.X. 2. 5	2 100-101	3 191 191	5 151-156	1 205-195	4 30 3 107	11 719 104	0 332 330	7 110 94
4 484-803	7 76 - 77	13 390-279	7 144 140	H.Y. 2. 1	0 45 97	3 84-101	A 120 124	M.N. 1. 11	3 378-379		11 100 114	1 202 202	10 120-144
4 373-366		14 83 84	0 131-130		1 77 70	5 101 105	6 101-170	3 1 45 1 45	2 210-217	H , N H , H	15 100 116	1 203 203	10 130-140
0 313-333		14 02 00	9 151-150	0 00 -10		3 102 103	2 101-113	5 145 145	3 222-232	• 21 7-231	17 133-124	2 113-103	13 111-120
0 413-404	10 230-231	19 118 104	10 101 -44	1 129 128	3 43 43	H:N= 29 13	0 /9 -00	Hak= 34 13	4 220 213	0 417 424	10 118 109	3 185-174	14 263 24
10 635 732	11 219 224	16 93-102	11 148-140	2 142 130	4 130-133	1 171-173	8 107 97	2 235-729	5 66 -45	8 278-285	H.K= 5, 6	5 185-170	H,K= 7, 2
12 280 259	15 113-122	18 162 167	12 87 90	4 72 -58	9 78 -69	3 104 97	9 165 172	4 112-112	7 178 168	10 92 89	1 174 173	6 79 61	1 180 181
14 404 383	18 125 121	H.K= 1. 3	13 113 114	5 49 44	12 96 109	H,K= 3, 0	10 112 108	H.K= 4, 0	8 268-273	12 256 250	3 78 78	7 218 227	3 209-195
16 -09-495	H.K. 0. 10	1 131-130	15 76 -79	6 264-275	H.K. 2. 6	2 141 126	14 73 -59	0 493 529	9 245 224	14 338-315	5 371-354	8 160-148	6 175 164
18 401-478	0 431-441	2 57 26	17 109 127	8 204 204	0 145-143	4 565-663	15 103 -94	2 271 286	10 345 320	14 101 117	4 141 117	10 07 01	13 07 104
70 747 387	2 222 162	3 1 44-1 70	H.K. 1	11 105 102	2 142-142	4 142 143	14 192-178	4 640-600	12 261-222		7 193 197	11 06 00	
20 341 352	2 232 232	3 100-178			102-102		10 102-117	4 940-980	12 271-232	H9 K4 24 1	1 101 102	11 70 07	
H, K= 0, 2	4.104 03	2 342 344	1 230-219	12 219 221	3 129 137	0 340 340	10 104 103	0 229-217	13 130-123	2 122-122	8 180-199	13 124-128	5 49 -41
0 241-231	5 80 88	7 83 76	3 65 72	14 101 -92	4 288 279	10 85 86	H.K= 3, 5	12 554 567	14 105 85	4 190 196	9 125-114	H,K= 6, 3	5 [66-169
1 391-387	6 144-151	8 78 - 69	4 119-109	16 148-151	5 170 167	12 144-145	1 92 85	14 73 57	15 78 -92	5 90 87	11 105 91	0 320-318	6 92 -70
2 209-192	8 240 235	11 209-201	5 357 357	20 88 -90	6 92 96	14 179-181	2 344 333	16 320-310	18 130-138	7 130 125	12 124 125	1 96 98	7 282 266
3 229-199	9 144-144	13 224-214	6 134 125	H.K= 2. 2	/ 174-165	20 117 104	4 281 279	18 115-135	H.K= 4, 6	9 107-104	13 254 252	2 154-150	9 78-104
4 256 271	10 117-101	15 167 164	7 224-227	0 134 128	9 189-170	H.K. 3. 1	6 155 154	H.K. 4. 1	1 131-133	11 87 -80	14 122-122	4 219 229	13 130 139
5 290 304	12 114 129	17 143 130	9 175 162	2 91 90	10 185 187	1 145-122	7 84 -83	0 152-160	2 156-167	12 107 -01	15 160-186	5 153-136	H.K. 7. 6
6 403 436	14 206-214	H.K. 1. 4	10 72 56	3 210 213	11 70 71	2 504 569	8 440-457	1 317-336	5 127-128	14 74 87	H. F. 5. 7	6 233 220	2 101-10
7 140-141	16 106 107	1 142-140	13 730-130	4 312-314	12 210-207	3 147-147	10 170-144	3 76 77	4 313 314	19 10 03	T P P P P P P P P P P	2 233 220	2 171-174
	15 105 101	1 192-190	19 230-220	4 312-310	12 210-201	4 310 334	10 170-100	5 5 66	0 512 510	10 112 134	1 80 -24	1 144 130	3 10 2
6 39 -93	H,K= 0, 12	2 221 220	19 11/-119	2 229-220	13 130 131	4 219 230	12 174 100	3 70 90	1 90 91	HiK# 5, 2	3 131-112	8 /9 00	2 14/ 123
11 74 66	0 252-269	3 247-230	15 223 239	6 59 -44	14 108-106	5 354 395	13 100 80	5 123-127	8 97 85	2 260 271	4 152 140	10 173-166	H;K= 7; 1
12 255-271	1 168 181	4 83 109	H,K= 1, 9	7 127-117	16 152 166	8 424-464	14 178 175	6 LO3 110	9 214 198	7 282-280	5 213 214	12 174-210	2 160 159
15 183-198	6 275 292	5 323 315	1 421 421	9 316 322	H,X= 2, 7	9 99 96	16 169 182	8 138 143	10 286-259	8 129-121	6 89-108	16 142 146	4 173 180
16 165 136	10 273-287	6 309-312	3 176-181	11 313-309	0 289-282	10 261-269	18 110-125	9 348 354	11 166-168	9 113 107	7 75 64	H+K= 6+ 4	8 255-264
18 98 95	H-K= 0.14	9 140-147	4 69 - 51	12 236 221	2 225 222	11 244-245	H.K= 3. 6	10 291-285	12 75 -83	11 167 152	8 75 -49	0 414 422	10 145-143
19 211 224	0 202 212	10 92-103	5 170-175	13 149 141	3 119 111	12 171 172	1 113-116	11 279-274	H.K	13 149-150	9 144-130	1 152-153	12 162 154
22 14 2-128	3 744 789	11 270-242	7 412-417	14 107 -95	4 108 -91	13 144-163	2 307 301	13 105 04	1 110 118		14 114 104	3 114-125	H. N. 7.
22 142-135	3 240 290	12 03-100	0 111 120	18 100 171	5 104 Db	14 344 340	3 166 160	14 73 77	1 110 110	14 111 102	14 116 106	2 114-125	
N , N U , N	T , N	12 92-100	1 111 120	17 127 121	2 104 42	14 204 200	9 199 190		2 120-190	16 49 119	n, k= 2, 0	5 241-254	
0 44 101	2 105-129	14 308 300	11 305 353	10 500-140	/ 108 -96	12 140 140	2 232-213	19 135 145	3 371 377	18 40-105	1 1/0-162	6 81 86	2 140 147
1 278 275	4 336 371	15 72 116	17 316-315	17 196-190	8 218 217	16 227 212	5 104-115	H#K= 4, 2	7 262-239	H,K# 5, 3	2 89 -90	8 114-112	7 245-25
2 109 113	6 65 -38	16 82 -82	H,K= 1, 10	H,K= 2, 3	9 175 167	18 178-200	6 73 68	0 89 -92	9 74 -87	1 377~383	3 167 158	9 75 84	9 140 13
3 395-401	8 257-288	H,K= 1, 5	1 79 86	0 447-467	10 242-229	19 121 117	7 67 -59	1 302-311	11 154-159	2 130 124	5 149 134	10 117 118	H,K= 7, '
4 134-134	10 109-103	1 200 202	2 305 293	1 351 358	11 168-166	20 L40-157	8 82 83	3 134-133	12 99 -98	3 20 3 196	13 182-185	11 134 141	1 79 10
5 300-320	12 304 311	2 192 195	4 93 -97	2 160 153	12 117 113	H.K. 3. 2	16 108 105	5 165 149	13 216 214	4 241 235	H.K. 5. 9	13 102-108	7 221-22
A 504-541	14 48 47	A 587 59A	7 123-126	3 384-374	13 96 86	1 306 333	18 118-111	8 72 50	15 191 196	5 154 145	1 238 232	14 110 117	9 125 11
7 439 445	14 179-121	\$ 281-288	0 78 81	6 158 149	14 01 -88	2 153 150	H. KR 3. 7	10 00 -08	H	4 122-117	4 194 141	15 112-125	H.K. 7.
0 11 2-110	10 127-121	4 401-400	14 122 114	7 774 220		3 208-124	2 263 261	11 172 140	1 242-247	3 34 8 380	6 378- 305	4 9 1 4 6	3 1 3 3 - 1 3
0 112-110	10 104 02	0 401-402	14 165 110	1 224 230		5 275-324	2 6 7 2 2 7 1	11 172 107	1 202-207	7 200 239	5 215-205	N N N N N N N N N N	3 123-13
10 287 272	20 121-101	1 157-150	TIAN 10 11	0 104 114	1 200-204	4 307 393	3 00 44	15 224-214	2 149-199	8 111-104	1 221-235	0 320 320	110-13
11 295 316	H,K* 1, L	8 127-123	2 82 -79	9 197-188	3 218-208	5 286 294	4 132-127	19 111 111	3 146-143	10 93 -77	11 218 234	2 87 - 75	5 178 19
12 227 244	l 244-255	10 262-282	3 90 -96	10 306-294	5 318-302	6 172-172	5 185-171	H,K# 4, 3	5 80 76	11 251-234	H,K= 5, 10	4 117-103	H,K=' 8, 1
13 271-275	2 315 308	11 220 219	4 90 86	11 178 163	6 83 101	8 243-235	6 LI4 110	0 122 124	6 178 186	12 96 66	5 147-151	H,K= 6, 6	10 156-18
15 86 -83	3 189 175	13 112 134	5 140 142	13 235-233	7 235 224	9 86 -86	8 222-222	3 124 140	9 121 113	13 104-100	6 205-220	0 291-292	H,K= 8,
16 150-156	4 60 65	14 478 480	6 132-132	16 142 129	9 564 563	10 187-193	11 73 84	5 152 132	10 84 -73	14 156 145	8 287 284	2 74 84	7 109 13
18 77 -55	6 118 85	15 95 -88	7 76 -71	18 106 107	11 246-242	12 114 102	13 76 61	9 231-243	12 86-100	17 237 240	H-K# 5. 11	3 163-160	H.K.S. 8.
10 114-116	1 440 471	17 160-169	H.W. 1. 12	21 147 145	12 128-132	14 210 211	15 114-107	11 126 126	16 219-222		4 173-103	4 134 110	9 105-11
19 119-115	0 04 0 000	11 100-194			11 161-140	15 140 150	14 177 174	13 164 144	N Ko 6 0		4 113-143		10 121 14
Heke Us d	8 292-220	H 4 K = 1 4 0	2	· · · · · · · · · · · · · · · · · · ·	19 191-140	17 100 179	10 14/ 134	10 100 104	T ())))))))))		F, K = 0, U	0 100 100	10 131 14
0 197, 224	A 148-194	1 330 331	4 128-102	U 201 201	17 102-108	17 215-200	HIN= 34 0	19 130-124	5 292-211	a 130-130	0 201 197	8 129 119	T i k i i i i i i i i i i
1 382 373	10 204-225	2 182-189	6 108 105	1 403-431	H,K= 2, 9	14 104 105	1 174 161	H.K. 4, 4	4 82 -73	5 193-187	2 115 128	H+K* 0+ /	5 88 11
2 385-400	ll 191-194	3 254-251	7 173 168	2 131 125	0 301-296	20 104-108	2 76 76	1 142-155	7 198 201	6 120-120	6 391-402	1 149-129	8 104 11
3 463-463	12 129 114	6 266 258	9 96-125	3 560-579	2 207 206	H,K= 3, 3	3 356-337	2 192 202	11 169 164	7 336 329	8 1CC -78	H,K= 6, 8	9 156-17
5 114-123	13 73 60	7 217-213	11 125-123	4 210-204	8 112 108	3 275-274	4 LO1 -90	3 141-143	13 189-179	8 200 198	10 287 280	1 235 239	H.K# 8,
6 423 426	15 157-141	8 156-173	H.K# 1. 13	5 114-106	10 168-160	4 220-234	5 117 114	5 207-210	H.K= 4. 10	9 188-180	12 111 98	3 203-211	5 80-12
7 10 1 124	16 249 247	9 118 111	1 109 101	6 96 100	H.K. 2. 10	5 315 311	H.K. 3. 9	6 319-314	AP- 80 0	11 129-118	16 130-133	5 150-144	7 97 11
10 92-104	17 216 210	11 154 144	2 133-134	7 200 310	1 111 100	6 247 244	1 167 148	7 115 04	3 171 164	12 161-143	H.K. A.	7 103 107	H.K. R.
11 74 00	20 142-144	12 121 120	8 136 180	9 176 160	3 331 314	0 99 04	4 233-313	a 117-117	4 172 184	1 1 1 1 7 1 4 7	0 141 141	10 110-115	0 725-14
A4 /8 99	20 192-172	12 131 139	0 130 190	7 317 379	5 551 510	7 00 07	7 233-213	0 111-112	- 112 175	13 191 143	0 101 103	10 119-119	0 227-24
12 170-180	H,K= 1, 2	13 93 87	H,K* 2, 0	10 271-275	6 297 292	11 125-124	> 282-257	¥ 398 386	10 154 159	15 151-146	1 154-149	H.K. 7, 0	3 168-16
13 327-318	2 268-232	14 164-165	0 140 131	11 182 177	7 179-180	13 144-133	6 175 16C	10 211 202	12 119-134	H,K= 5, 5	2 270 260	Z 88 88	7 136 12
15 82 107	4 87 68	17 248-254	Z 93 74	12 298 303	9 215-190	14 121-134	9 98 -85	11 119-115	H,K= 4, 11	1 264 269	4 202-204	6 190-165	
ZO 166 168	5 122-108	19 150 148	6 459-517	13,320-330	13 139 136	15 123 118	11 129 140	12 163 152	1 163 180	2 202 20C	6 368-363	8 224 204	
H,K= 0, `8	6 213-197	H,K= 1, 7	8 312-341	14 71 105	H.K= 2, 11	16 110 129	13 193 205	14 121-107	8 123-113	5 260-254	7 72 -64	H.K. 7. 1	
0 191-184	7 481-502	1 175-166	10 317 320	15 409-410	0 205 204	19 179 188	H.K= 3. 10	15 99 -84	9 226-218	7 201-209	9 118 113	1 161-165	
1 205-214	8 396 410	2 61 68	12 164 167	16 156-152	3 83 79	H.K= 3. 4	2 279-265	19 113 101	H.K= 4. 12	8 116-108	10 213 194	2 222 210	

TABLE V

INTERATOMIC DISTANCES (Å) IN Pb6O(OH)64+

Pb(3)-Pb(4)	$3.440 (5)^{a}$	O(2)-Pb(2)	2.30(5)
Pb(5)-Pb(6)	3.667(6)	O(2)-Pb(1)	2.32(5)
Pb(1)-Pb(2)	3.674(6)	O(2)-Pb(4)	2.55(5)
Pb(4)-Pb(5)	3.778(5)	O(3)–Pb(2)	2.18(6)
Pb(3)-Pb(5)	3.779(6)	O(3) - Pb(1)	2.36(6)
Pb(2)-Pb(4)	3.786(5)	O(3) - Pb(3)	3.02 (6)
Pb(2)-Pb(5)	3.790(5)	O(4)-Pb(5)	2.23(4)
Pb(2)-Pb(3)	3.795(5)	O(4)-Pb(6)	2.37(4)
Pb(3)-Pb(6)	3.846(5)	O(4)-Pb(3)	2.53(4)
Pb(1)-Pb(4)	3.949(6)	O(5)-Pb(5)	2.21(5)
Pb(1)-Pb(3)	4.086(6)	O(5)-Pb(6)	2.34(5)
Pb(4)-Pb(6)	4.086(6)	O(5)-Pb(4)	2.67(5)
		O(6)-Pb(3)	2.24(5)
O(1)-Pb(3)	2.22(6)	O(6)-Pb(6)	2.33(5)
O(1)-Pb(2)	2.29 (6)	O(6)-Pb(4)	2.53(6)
O(1)-Pb(5)	2.29 (6)	O(7)-Pb(1)	2.27(5)
O(1)-Pb(4)	2.35(6)	O(7)-Pb(4)	2.47(5)
		O(7)-Pb(3)	2.49(5)

^a Standard deviations in parentheses refer to the least significant digit.

Discussion

Apart from the perchlorate ions, the asymmetric unit contains 8 oxygen atoms of three distinct types. These atoms possess 8 hydrogen atoms according to the chemical stoichiometry. On the basis of the structure we assign these as an oxide ion, O(1), a water molecule, O(8), and six hydroxide ions.

The lead atoms occur in discrete clusters of six, with

TABLE VI

Chlorine-Oxygen Distances (Å) in Perchlorate Groups

Cl(1)-O(11)	$1.45 (6)^a$	Cl(3)-O(31)	1.46(6)
Cl(1)-O(12)	1.42(6)	Cl(3)-O(32)	1.43(7)
Cl(1)-O(13)	1.33(7)	Cl(3)-O(33)	1.36(6)
Cl(1)-O(14)	1.53(7)	Cl(3)-O(34)	1.40(8)
Cl(2) - O(21)	1.48(7)	Cl(4)-O(41)	1.51(8)
Cl(2)-O(22)	1.52(8)	Cl(4) - O(42)	1.41(5)
Cl(2) - O(23)	1.37(6)	Cl(4)-O(43)	1.41(5)
Cl(2)-O(24)	1.43 (6)	Cl(4)-O(44)	1.33(7)

^a Standard deviations in parentheses refer to the least significant digits.

TABLE VII

DISTANCES (Å) INVOLVING THE WATER MOLECULE

Atoms	Distance	Atoms	Distance
D(8)-Pb(6)	2.74(7)	O(8) - O(31)	3.25(9)
O(8) - O(32)	2.77(9)	O(8) - O(23)	3.29(10)
O(8)-O(41)	3.15(10)		

7 oxygen atoms intimately bound to each cluster as shown in Figure 1. We formulate this cluster as $Pb_6O(OH)_6^{4+}$. These lead atoms are arranged at the corners of three face-sharing tetrahedra, as seen in Figure 2. The structure of this cluster is related to that¹¹ of $Pb_4(OH)_4^{4+}$, in which the lead atoms form a

(11) O. E. Esval, Thesis, University of North Carolina, 1963.

TABLE VIII

Some Angles (in deg) in the Pb6O(OH)64+ Cluster^a

Pb(2)-Pb(1)-Pb(3)	58.3	Pb(1)-Pb(4)-Pb(5)	111.3	Pb(3)-O(1)-Pb(5)	114
Pb(2)-Pb(1)-Pb(4)	59.4	Pb(1)-Pb(4)-Pb(6)	125.5	Pb(4)-O(1)-Pb(5)	109
Pb(3)-Pb(1)-Pb(4)	50.7	Pb(2)-Pb(4)-Pb(3)	63.1	Pb(1)-O(2)-Pb(2)	105
Pb(1)-Pb(2)-Pb(3)	66.3	Pb(2)-Pb(4)-Pb(5)	60.2	Pb(1)-O(2)-Pb(4)	108
Pb(1)-Pb(2)-Pb(4)	63.9	Pb(2)-Pb(4)-Pb(6)	107.5	Pb(2)-O(2)-Pb(4)	103
Pb(1)-Pb(2)-Pb(5)	117.4	Pb(3)-Pb(4)-Pb(5)	62.9	Pb(1)-O(3)-Pb(2)	108
Pb(3)-Pb(2)-Pb(4)	54.0	Pb(3)-Pb(4)-Pb(6)	60.7	Pb(1)-O(3)-Pb(3)	98
Pb(3)-Pb(2)-Pb(5)	59.8	Pb(5)-Pb(4)-Pb(6)	55.4	Pb(2)-O(3)-Pb(3)	92
Pb(4)-Pb(2)-Pb(5)	59.8	Pb(2)-Pb(5)-Pb(3)	60.2	Pb(3)-O(4)-Pb(5)	105
Pb(1)-Pb(3)-Pb(2)	55.4	Pb(2)-Pb(5)-Pb(4)	60.0	Pb(3)-O(4)-Pb(6)	103
Pb(1)-Pb(3)-Pb(4)	62.6	Pb(2)-Pb(5)-Pb(6)	116.8	Pb(5)-O(4)-Pb(6)	106
Pb(1)-Pb(3)-Pb(5)	108.3	Pb(3)-Pb(5)-Pb(4)	54.2	Pb(4)-O(5)-Pb(5)	101
Pb(1)-Pb(3)-Pb(6)	128.5	Pb(3)-Pb(5)-Pb(6)	62.2	Pb(4)-O(5)-Pb(6)	109
Pb(2)-Pb(3)-Pb(4)	62.9	Pb(4)-Pb(5)-Pb(6)	66.6	Pb(5)-O(5)-Pb(6)	107
Pb(2)-Pb(3)-Pb(5)	60.1	Pb(3)-Pb(6)-Pb(4)	51.3	Pb(3)-O(6)-Pb(4)	92
Pb(2)-Pb(3)-Pb(6)	112.4	Pb(3)-Pb(6)-Pb(5)	60.3	Pb(3)-O(6)-Pb(6)	115
Pb(4)-Pb(3)-Pb(5)	62.9	Pb(4)-Pb(6)-Pb(5)	58.0	Pb(4)-O(6)-Pb(6)	115
Pb(4)-Pb(3)-Pb(6)	68.0	Pb(2)-O(1)-Pb(3)	115	Pb(1)-O(7)-Pb(3)	118
Pb(5)-Pb(3)-Pb(6)	57.5	Pb(2)-O(1)-Pb(4)	109	Pb(1)-O(7)-Pb(4)	113
Pb(1)-Pb(4)-Pb(2)	56.7	Pb(2)-O(1)-Pb(5)	112	Pb(3)-O(7)-Pb(4)	88
Pb(1)-Pb(4)-Pb(3)	66.7	Pb(3)-O(1)-Pb(4)	98		

^a The estimated standard deviations of the Pb-Pb-Pb and the Pb-O-Pb angles are ± 0.1 and $\pm 2^{\circ}$, respectively.

Figure 1.—Stereoscopic view of the $Pb_6O(OH)_6^{4+}$ complex. The stick bonds connect oxygen and lead atoms; the lines define the lead polyhedra. Interatomic distances are given in Table V and angles in Table VIII.

Figure 2.—The three face-sharing tetrahedra of Pb atoms in the $Pb_6O(OH)_{\delta^{4+}}$ cluster.

single tetrahedron, and to that¹² of Sn_2OSO_4 , in which an isolated Sn_8 unit has four tin atoms at the corners of a central tetrahedron all four faces of which are covered by the remaining tin atoms.

The oxide ion is near the center of the central tetrahedron, at an average distance 2.29 Å from its lead neighbors. The oxygen atoms in tetragonal PbO

have similar tetrahedral coordination, with lead neighbors at 2.30 Å.¹³ Thus the central tetrahedron of the cluster can be considered as a fragment of the PbO structure. Oxygen with four metal neighbors in isolated complexes is relatively rare, but some examples are $Be_4O(CH_3COO)_6$ and $Zn_4O(CH_3COO)_6,^{14}$ Mg₄OBr₆·4C₄H₁₀O,¹⁵ and Cu₄OCl₆((C₆H₅)₈PO)₄.¹⁶

Each of the six hydroxide ions is adjacent to three lead atoms on an external face of a noncentral tetrahedron, and all such faces are covered in this way. This topology gives the three lead atoms in each face of every tetrahedron one, and only one, oxygen neighbor in common. The oxide ion fills this role for four faces, while each hydroxide ion is involved with only one face.

The water molecule is only loosely bonded to this complex, at a distance 2.74 Å from Pb(6) on one corner. It is remote from any other lead atoms. Its nearest oxygen neighbor is O(32) at 2.77 \pm 0.09 Å and in a

- (15) G. Stucky and R. E. Rundle, J. Am. Chem. Soc., 86, 4821 (1964).
- (16) J. A. Bertrand, Inorg. Chem., 6, 495 (1967).

⁽¹³⁾ W. T. Moore and L. Pauling, J. Am. Chem. Soc., 63, 1392 (1941).

⁽¹⁴⁾ A. F. Wells, "Structural Inorganic Chemistry," 3rd ed, 1962, Oxford, p 403.

direction 116° from Pb(6); this distance and direction suggest hydrogen bonding. Other oxygen neighbors are at distances of 3.15 Å or more.

There is considerable variation in the Pb-Pb distances. The shortest one, 3.44 Å, is unique in that it is the only edge shared by all three tetrahedra. It may be compared with the distance 3.50 Å found in metallic lead. The other Pb-Pb neighbor distances in the cluster range from 3.67 to 4.09 Å, compared with 3.85 Å found in the $Pb_4(OH)_4^{4+}$ complex.¹¹ The cluster conforms only approximately to the symmetry mm2 (C_{2v}) which is permitted by its topology, but the lead positions are very close to symmetry 2 (C_2). The hydroxide ions are expected to have their protons directed outward from the cluster, and they will tend to form hydrogen bonds to the surrounding perchlorate ions. Evidently such bonding or some other packing force prevents exact symmetry for the cluster. Each hydroxide ion has one or two perchlorate oxygen neighbors at distances between 2.94 and 3.15 Å to which it could form weak hydrogen bonds. We cannot make any unique assignment of hydrogen bonds on the basis of our results. The low accuracy of oxygen-oxygen distances (ca, 0.08 Å) tends to obscure the distinction between bonds and nonbonds, and the bonds may involve disorder or bifurcation.

The perchlorate ions are not significantly coordinated, the closest distance from a lead to a perchlorate oxygen being 2.9 Å. This is in accord with the Raman and infrared spectra,¹⁷ which show bands characteristic of unbound ClO_4^- . The observed distortions of perchlorate geometry are within the rather large standard deviations of the oxygen positions (see Table VI).

On the basis of its Raman spectrum the hexanuclear unit was predicted to have octahedral geometry.^{2b} The main evidence was the occurrence of three Raman bands

(17) V. A. Maroni and T. G. Spiro, J. Am. Chem. Soc., 89, 45 (1967).

in the metal-metal stretching region, analogous to those found for the known octahedral species $Bi_6(OH)_{12}^{6+}$. The actual geometry revealed here (idealized point symmetry C_{2v} , lowered by the deviations in the Pb-O distances, and in the Pb-Pb distances around the base of the complex) requires 12 Raman-active vibrational modes in the metal-metal region. Evidently there is a good deal of accidental degeneracy in these frequencies. Preliminary calculations¹⁸ show that this is a plausible consequence of the observed geometry.

An interesting question is whether the rather unusual structure found here for the hexameric complex is intrinsically more stable than others which can be envisaged, or whether it is stabilized by crystal forces. The results of a solution X-ray scattering study by Johannson and Olin¹⁹ point to the former conclusion. The Pb-Pb peak in the radial distribution function, which occurs at 3.85 Å in solutions containing tetrahedral $Pb_4(OH)_4^{4+}$, simply broadens without change in position as the OH: Pb ratio is increased toward 1.33. Weak next nearest neighbor peaks are found at 6.37 and 7.14 Å. (Nonadjacent Pb-Pb distances in Pb₆O- $(OH)_{6}^{4+}$ occur at 6.36 and 7.14 Å.) These observations rule out an octahedral complex in solution and are entirely consistent with the structure reported here. In fact a radial distribution function calculated on the basis of our structure is in quantitative agreement with the solution scattering data.¹⁹

Acknowledgments.—We wish to thank Dr. Michael G. B. Drew and Dr. Barry DeBoer for valuable assistance during the course of this work. We also thank Dr. Georg Johannson for communicating to us the results of his solution scattering experiments in advance of their publication.

⁽¹⁸⁾ V. A. Maroni and T. G. Spiro, to be submitted for publication.
(19) G. Johannson and Å. Olin, Acta Chem. Scand., in press.